

8350 PARKLINE BLVD ORLANDO, FL 32809 (407) 240-1356

3310 HILL AVE EVERETT, WA 98201 (425) 259-6799

SIMULATION TEST REPORT

NCTL-610-23415-1_{E0A0}

REPORT To: ClimateGuard Manufacturing 2500 North Pulaski Chicago, IL 60639

SIMULATION DATE: 08/29/20

PRODUCT: Sliding Glass Door

PRODUCT CPD DESIGNATION: RSC-A-1

This report is for recertification of an existing product line.

NATIONAL CERTIFIED TESTING LABORATORIES

8350 PARKLINE BLVD ORLANDO, FL 32809 (407) 240-1356 3310 HILL AVE EVERETT, WA 98201 (425) 259-6799

SIMULATION TEST REPORT

Simulation Standards

ANSI/NFRC 100-2017 "Procedure for Determining Fenestration Product U-

factors"

ANSI/NFRC 200-2017 "Procedure for Determining Fenestration Product Solar Heat Gain Coefficients and Visible Transmittance at Normal

Incidence"

NFRC 500-2017 "Procedure for Determining Fenestration Product

Condensation Resistance Values"

THERM 7 / WINDOW 7 NFRC Simulation Manual (July 2017) NFRC 2010 Technical Interpretations Manual (November 2017)

Approved Simulation Software Center of Glass

Window 7.4

2-D Heat Transfer

THERM 7.4

Total Product Calculations

Window 7.4

Note: All dimensions are in the order (Width x Height) unless otherwise noted.

Report Number

NCTL-610-23415-1E0A0

Model/ Series

Sliding Glass Door

Operator Type

Double Door Sliding Glass (DDSG)

Simulation Size

2000 mm x 2000 mm (79" x 79")

Frame Type

Vinvl w/ reinforcement - Interlock (VI)

Nail Fin

Removable and simulated without

Panel Type

Vinyl with reinforcement - Vertical (VV)

Frame/Sash Material & Finish Rigid vinyl (PVC)

Reinforcement

Galvanized steel in meeting stile and lock stile

Thermal Break(s)

Not applicable

Weather Seal(s)

Right Head (1) Strip mohair

Right Jamb
(1) Strip mohair

Right Sill

(1) Strip mohair

Meeting Stile
Not applicable

Left Head

(1) Strip mohair

<u>Left Jamb</u> Not applicable

Left Sill

(1) Strip mohair

Edge of Glass

Exterior glazed with silicone back bedding on glazing leg, and snap-in rigid

vinyl glazing bead.

Spacer System(s)

Coated steel U-shaped spacer system - dual sealed (CU-D)

Gas Fillings

Argon 90% single probe per the client (ARG)

Divider(s)

Grid 1

.1875" x .610" painted aluminum rectangle

Divider Notes

Where the space between lite and divider is greater than 3 mm, dividers are not modeled. Solar Heat Gain Coefficient (SHGC) and Visible Light

Transmittance (VT) are calculated using default dividers of less than 1" and

greater than/ equal to 1".

For U-factor, SHGC, and VT calculations the standard default grid pattern of

12" is used, as established by the Window 7 program.

Notes, Additional Information, Comments, and Assumptions

All simulations use the emissivity from the approved ANSI/NFRC spectral data files with the International Glazing Database (IGDB).

For Solar Heat Gain and Visible Light Transmittance; all frame, divider and glass options are grouped using the best case center of glass/ worst-case frame values from the "U" Factor calculations as required by ANSI/NFRC 200-2017.

A default frame absorptance of 0.30 is assumed for all products except glazing window walls, glazing curtain walls, and slopped glazing wall - all of which will have a frame absorptance of 0.50

This report is the joint property of National Certified Testing Laboratories, Inc. (NCTL) and the client to whom it is issued. Permission to reproduce this report by anyone other than NCTL and the Client must be granted in writing by both of the above parties. This report may not be reproduced except in its entirety

Supporting information including THERM 7 and WINDOW 7 files are being submitted as part of this report. The simulation matrix is being submitted electronically.

Detailed assembly drawings, horizontal and vertical cross-sectional drawings, profile drawings, parts drawings, and a bill of materials as supplied by the client were used as the basis for performing the simulations. Copies are attached to this report. The results were secured by using the designated methods and NFRC approved simulation programs as required by, and in full compliance with, NFRC procedures.

This report does not constitute certification of this product. The results in this report apply only to the sample as shown in the attached drawings, using the components and construction methods described herein. NCTL does not warrant the accuracy of the computer programs used to obtain the results. Client request for

work performed by NCTL and its associated documentation constitute approval by client for Inspection Agency (IA) submission.

Ratings values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those options identified on a valid Certificate of Authorization (CA) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes.

The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.

Units and rounding is in accordance with NFRC 601, *Units and Measurement Policy* except that all units may be reported in IP as the primary units after conversion and any matrix is reported in IP units only unless requested otherwise by the client.

The manufacturer is capable of producing, in its normal manufacturing process, products in sizes identical to the model sizes listed in the ANSI/NFRC 100 Table 4-3 and have a least deviation of 0 within the tolerances of ANSI/NFRC 100. All simulations are performed in the sizes and configurations listed in ANSI/NFRC 100 Table 4-3 except that a non-standard size may be simulated and identified in the matrix to match the manufacturer's physical test sample. Glass and glazing types, Low-E placement, finishes and other required information is included in the NFRC U-Factor Simulation Summary Report and/ or the NFRC SHGC/ VT Simulation Summary Report included in this document. Additional supporting information and modeling assumptions are included in the individual reports obtained from the approved simulation programs and in the notes following the required summary reports.

National Certified Testing Laboratories

a totogo

Performed by:

BRYCE PETERS

NFRC Certified Simulator

MARK BENNETT NFRC Certified Simulator

Reviewed by:

Simulator-In-Responsible-Charge

DIGITAL SIGNATURE

Attachments Glazing Matrix Appendix A - Revision Summary Appendix B - Product Drawings

VT GRID<1"	9.															
	0.6		0.51		0.47						0.46		0.39			
VT NO GRID	68		58		53		0.53		0.45	1					0.44	
SHGC GRID>=1"	0		0		0		0	П		+	7			П	_	
SHGC GRID<1"	.57		0.27		.20			П		1	0.25		0.23			
	64 0	-	30 0	H	0.23 0.	H	28		26	1	0		0	П	0.26	
SHGC NO GRID	0.0	H	0	H	0	H	0.		0.	-	-				0	
ondensation Resistance			52		52	_	9		61		29		61		62	
U-factor	0.47		0.30		0.29		0.26		0.21		0.26		0.22		0.23	
Grid Size	0.75		0.75		0.75						0.75		0.75			
Grid Type	D.N.		C		C		z		z		O		O		z	1
Spacer	Cn-D		CITD	3	G-1-D		CO-D		CU-D		CO-D		CO-D	-	CII-D	
Tint	ū		2	1	2		o d		C		C	-	ŭ	L	2	
Emissivity Surface 6	+	+	+	+	+	+	+	-	5	-	-	-	22	+	2	1
Emissivity Surface 5		1	1				1	L	0.035	L			0.035	L	0.035	3
Emissivity Surface 4			1	1	1	1	1	1	1	L	L	1	1	1	1	4
Emissivity Surface 3	\downarrow	+	1	1	1	+	1	-	140	-	2	-	14	-	4	5
Emissivity Surface 2			3000	0.03	000	0.02	0.035		0.035		0.035		0.035		0.035	5.0
Emissivity Surface 1	I	I	I	I	1		1	1	1	L	1	1		1	1	
% of Gap Fill 2	1	1	1	1	1	1	9	-	95	+	95	-	8	+	2	-
% of Gap Fill 1	+	+	1	S	1	S	20	_	9		0,00	_	00	_	20	
Gap Fill 2	1	1				1	000		O V		O V		V	_		AKG
Gap Fill 1	2	AIK	9	ARG	9	AKG		ARG	VDV		VOV	-	_	ARG		AKG
Gap 2			1				000	0.323	0000	0.323	0000	0.323	0000	0.323	100	0.284
Gap 1	1	0.764		0.764		0.764	000	0.323	0000	0.323	000	0.323	0000	0.323		0.284
Pane Thickness #3							1	0.118	1	0.1.0	1	0.118		0.118		0.154
Pane Thickness #2		0.118		0.118		0.118		0.118		0.118		0.118		0.118		0.118
Pane Thickness #1		0.118		0.118		0.118		0.118	1	0.118	1	0.118		0.118		0 154
							1	sar		270	T	Clear	T	270		270
Pane ID #3							1	m Clear						LoE		TO I
These seasons have county of yourse of the county								3 mm		3 mm		3 mm		3 mm		A mm
		ear		Clear		Clear		Clear	1	. 1		ear		-		_
Pane ID #2		mm Clear		m C		mm Cl		mm Cl		3 mm Clear		mm Clea		3 mm Clear		0
P		3 m		3 mm		3		3				3				0
		ear		270		366		270		270		mm LoE 270		mm LoE 270		4 1 1 1 mm Close
Pane ID #1		3 mm Clear		LOE		LOE		LOE		LOE		LoE		LOE		-
		3 m		3 mm		3 mm		3 mm		3 mm		3 mm		3 mm		1
Product Number		-	-	2		3		4		5		9		7		,
								Г				Gild		Gid		ſ
PRODUCT		No Grids/ Grids		No Grids/ Grids		No Grids/ Grids		No Grids		No Grids		1875" x 0.610" Rectangle (.1875" x 0.610" Rectangle Gid		

Appendix A

Revision Summary

Identification

<u>Date</u>

Revision

Original Issue

08/29/20

Report to ClimateGuard Manufacturing and Inspection Agency